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Abstract. Stability and dynamics of a distributed gravity traveling-wave system which is of practical importance
in ocean-wave modeling are studied in this paper. A new cubic nonlinear evolution equation for the distributed
wave system has been derived. The instability findings of the primary wave system are of critical value in the study
of real wind waves and are technically a generalization of the Benjamin–Feir instability for a monochromatic
water-wave system.
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1. Introduction

Recent low-grazing-angle radar observations (Werle [1]) suggest the general existence of wind
waves propagating as multiple wave groups. The characteristics of the groups suggest that they
may result from wave instability of the Benjamin–Feir [2] type. The radar is believed to be
highly useful in its ability to see the wave groups, and groups have been seen propagating over
a variety of angles, notably in the wind direction. These observations immediately give rise
to the question as to whether infinitesimal waves distributed in their direction of propagation
about the wind, constitute an unstable wave system in a sense similar to a monochromatic,
unidirectional wave undergoing Benjamin–Feir instability. This question has never been raised
in the literature, and therefore the present theoretical study of the instability of a wave system
whose energy is continuously distributed was undertaken; in particular, the wave energy is
assumed distributed on a straight line segment, bisected by the wind direction, in vector wave-
number space. Thereforek = (p, q) is discrete in the wind direction,p = p0, but distributed
transversely over−q0 6 q 6 q0, where we restricted our attention toq0/p0 < 2−

1
2 .

In what follows, the Hamiltonian treatment of Zakharov [3], first formulated in 1968, is
applied to derive a cubic nonlinear evolution equation appropriate to this particular distributed
wave system, an integro-partial differential equation, and linear stability of the wave system
is subsequently studied.

2. Hamiltonian formulation

The problem is first formulated in wave-number space, and subsequently partially transformed
to physical space. With the usual nomenclature,

η(k, t) = 1

2π

∫
η(x, t)e−ik.x dx, ψ(k, t) = 1

2π

∫
ψ(x, t)e−ik.x dx, (1)
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60 J. J. Li and M. P. Tulin

whereη(x, t) is the wave elevation andψ(x, t) the potential on the water surface, the equations
of the system in Hamiltonian form become

∂ηk

∂t
= δH

δψ∗k
,

∂ψk

∂t
= − δH

δη∗k
, (2)

whereH [η(k, t), ψ(k, t)] has been given to fourth order in the wave slope (Zakharov [4]).
According to the procedure followed by Zakharov [4] and followed up by Krasitskii [5], we
may first introduce a normal complex variable,a(k, t) = 2− 1

2 (γkη(k, t) + iψ(k, t)/γk), fol-
lowed by its canonical transformation to another normal variable,bk, allowing the expression
of the governing equation in a particularly useful form,

i
∂bk

∂t
= δH

δb∗k
= ωkbk +

∫
T (k, k1, k2, k3)b

∗
k1bk2bk3δk+k1−k2−k3 dk1 dk2 dk3 (3)

or

i
∂Bk

∂t
=
∫
T (k, k1, k2, k3)B

∗
k1Bk2Bk3 ei[ω(k)+ω(k1)−ω(k2)−ω(k3)]t

×δk+k1−k2−k3 dk1 dk2 dk3, (4)

whereBk = bk eiω(k)t ; the interaction kernelT and others are given in the Appendix.
As is well known, this Zakharov equation (4) governs the weakly nonlinear dynamics of

surface water waves, and is completely equivalent to the full water-wave equations in physical
space, to third order.

3. Model equations

A general treatment of (4) does not exist, so we first specialize it to the case of interest. Our
concern is the perturbation and stability of the primary wave system which has a straight line
segment in the wave number space bisected by the wind direction. That is,k = (p0, q), where
−q0 6 q 6 q0(q0/p0 < 2− 1

2 ). Therefore, we consider the wave number space:k = (p, q),
wherep0− δp 6 p 6 p0+ δp(δp/p0 small), and−q0 6 q 6 q0. Herep0 andq0 are arbitrary
initially, except for the restriction onq0/p0.

Having restricted the range ofk, we may correspondingly simplify the evolution equation
(3) by approximatingωk and the kernelT nearp = p0. We first expand the linear dispersion
relation aroundp = p0:

ωk ≡ ω(p, q) ∼= ω0+ ω1(p − p0)+ 1
2ω2(p − p0)

2, (5)

where coefficientsωj are given in the Appendix and take

T (k, k1, k2, k3) ∼= T [(p0, q), (p0, q1), (p0, q2), (p0, q3)] ≡ T0(q, q1, q2, q3). (6)

Then (3) becomes,

i
∂b(p, q, t)

∂t
= [ω0(q)+ ω1(q)

.(p − p0)+ 1
2ω2(q)

.(p − p0)
2]b(p, q, t)

+
∫
T0(q, q1, q2, q3)b

∗(p1, q1)b(p2, q2)b(p3, q3)

×δk+k1−k2−k3 dp1 dq1 dp2 dq2 dp3 dq3. (7)
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To return tox-space, we transform (7) with respect to(p − p0), using

b(x, q, t) =
∫
b(p, q, t)ei[p−po]x dp (8)

and obtain

i
∂b(x, q, t)

∂t
= ω0(q)b(x, q, t) − iω1(q)

∂b(x, q, t)

∂x
− 1

2ω2(q)
∂2b(x, q, t)

∂x2

+
∫
T0(q, q1, q2, q3)b

∗(x, q1, t)b(x, q2, t)b(x, q3, t)

×δq+q1−q2−q3 dq1 dq2 dq3. (9)

From the above context there should be no confusion ofb(x, q, t) with b(p, q, t).
We can put Equation (9) in the following form by writing,

b(x, q, t) = B(x, q, t)e−iωo(q)t ,

and, using a moving reference,x − ω1t → x, we have

i
∂Bq

∂t
= −1

2ω2(q)
∂2Bq

∂x2

+
∫
T0(q, q1, q2, q3)B

∗
q1Bq2Bq3 ei[ω(q)+ω(q1)−ω(q2)−ω(q3)]t

×δq+q1−q2−q3 dq1 dq2 dq3. (10)

Assuming symmetry aboutq = 0, corresponding physically to the case of the reso-
nant wave pairs taking a special configuration in wave number plane during resonant wave
interaction, a parallelogram, such that(q2, q3) = (q, q1), we have,

i
∂Bq

∂t
= −1

2ω2(q)
∂2Bq

∂x2
+ 2q0Bq

∫
T0(q, q1)|Bq1|2 dq1, (11)

whereω2(q) is given in (A12),T0(q, q1) ≡ T0(q, q1, q, q1) is real and symmetric, and its
integration is over(−q0, q0).

Equation (11) now governs the weakly nonlinear dynamics of ap-narrow banded andq-
distributed,q-symmetric water wave system ink = (p, q) and is therefore a generalization
of the cubic-nonlinear Schrödinger equation for a unidirectional narrow-banded water wave
system.

4. Primary wave system and its instability

Equation (11) admits ap-unmodulated quasi-stationary wave envelope solution, analogous to
the Stokes wave of the cubic-nonlinear Schrödinger equation,

B0(x, q, t) = α(q)e−iβ(q)t , (12)
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whereβ(q) = 2qs
∫
T0(q, q1)|α(q1)|2 dq1, integrated over(−q0, q0). This quasi-stationary

envelope solution corresponds to the primary wave system with ap-discrete(p = p0) and
transversely distributed spectrum(q ∈ [−q0, q0]).

We shall be concerned in the following with the stability of the primary wave system. We
first perturb the primary wave system,B0(q, t) = α(q)e−iβ(q)t ,

B(x, q, t) = B0(q, t)[1+ δB(x, q, t)], (13)

where δB is a small but otherwise arbitrary perturbation, and linearize it with respect to
δB(x, q, t),

i
∂δBq

∂t
= −1

2ω2(q)
∂2δBq

∂x2
+ 2q0

∫
T0(q, q1)|α(q1)|2(δBq1+ δB∗q1)dq1, (14)

whereδBq ≡ δB(x, q, t).
The general solution to the perturbation equation (14) can be written in the form

δB(x, q, t) = δB+(q)ei(Kx+�t) + [δB−(q)ei(Kx+�t)]∗, (15)

where the eigen numberK is real, the eigenvalue� can be complex, andδB+(q) 6= δB−(q)
in general. We then have the eigenvalue problem for{δB+, δB−},(

�+ 1
2K

2ω2+ Lα Lα

−Lα �+ 1
2K

2ω2+ Lα

)
·
(
δB+

δB−

)
= 0, (16)

where the integral operatorLα is defined by,Lαs(q) = 2q0
∫
T0(q, q1)|α(q1)|2s(q1)dq1.

Equivalently, we may write,(
� 1

2K
2ω2(q)

1
2K

2ω2(q)+ 2|α(q)|2L0 �

)
·
(
u

ν

)
= 0, (17)

where

u(q) = |α(q)|2[δB+(q)+ δB−(q)], v(q) = |α(q)|2[δB+(q)− δB−(q)] (18)

andL0s(q) = 2q0
∫
T0(q, q1)s(q1)dq1.

The eigenvalue problem (17) is difficult to solve, because of its varying coefficients. We
shall approach the problem by studying its behavior near�2 = 0, using a perturbation method.
From (17), we have

{�2− [12K2ω2(q)]2−K2ω2(q)|α(q)|2L0}u(q) = 0. (19)

For a given perturbationδB, Equation (17) defines a dispersion relation,�2 = f (K2),
with (K2,�2) = (0,0) being always a solution. For reasons of stability, we are interested
in nontrivial zero solutions. That is,�2 = 0, for some nontrivial values of K2nt 6= 0. If such
solutions exist,(K2,�2) = (K2

nt ,0), we may immediately deduce the stability of the solutions
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nearby (stable if�2 > 0 always or unstable if�2 < 0 somewhere). To this end, we shall
transform (19) to a form convenient to cope with

1
4K

2w(q)−
∫
TN(q, q1)w(q1)dq1 = 0, (20)

where

w(q) = u(q)|α(q)|−1[−ω2(q)] 12
{

1−�2

[12K2ω2(q)]2
} 1

2

. (21)

The kernelTN(q, q1) is symmetric,

TN(q, q1) = 2q0T0(q, q1)|α(q)||α(q1)|[−ω2(q)]− 1
2 [−ω2(q1)]− 1

2

×
{

1−�2

[12K2ω2(q)]2
}− 1

2
{

1−�2

[12K2ω2(q1)]2
}− 1

2

. (22)

Assuming that(q0/p0)
2 < 1

2 (note thatω2(q) < 0 for (q/p0)
2 6 (q0/p0)

2 < 1
2), and�2

small (more precisely�2/[12K2ω2(q)]2� 1), we have

TN(q, q1) ∼= 2q0T0(q, q1)|α(q)||α(q1)|[−ω2(q)]− 1
2 [−ω2(q1)]− 1

2

×{1+ 2�2K−4[ω2(q)]−2 + 2�2K−4[ω2(q1)]−2}. (23)

Thus (20) becomes,

[14K2− L1− 2�2K−4L2]w = 0, (24)

whereLj are given by,

L1s(q) = 2q0

∫
T0(q, q1)|α(q)||α(q1)|[−ω2(q)]− 1

2 [−ω2(q1)]− 1
2 s(q1)dq1,

L2s(q) = 2q0

∫
T0(q, q1)|α(q)||α(q1)|[ω2(q)ω2(q1)]− 1

2

×{[ω2(q)]−2 + [ω2(q1)]−2}s(q1)dq1.

(25)

We can now solve Equation (24) by using a prescribed perturbation method. Starting with
certain unperturbed solution,�2 = 0,K2 6= 0, we obtain from (24),14K

2w = L1w. It is
easy to show thatL1 is self-adjoint and compact (the kernel ofL1 is real, symmetric, and
bounded, when|α(q)| is assumed continuous) and by the Hilbert–Schmidt expansion theory
there therefore exists a set of non-empty, real eigenvalues{λj } satisfying

λ−1 < λ
−
2 < · · · < λ−N < · · · < 0< · · · < λ+N < · · · < λ+2 < λ+1 ,

whereλ+1 = sups(q) 6=0{
∫
L1s(q)s

∗(q1)dq1/
∫
s(q)s∗(q1)dq1}, and eigenfunctions{wj} sat-

isfy, λ±j w
±
j = L1w

±
j , for j = 1,2. We have thus a set of nontrivial zeros�2 = 0 atK2

j = 4λ+j ,
for j = 1,2. Below we will show that�2(K2) < 0 for someK2

j < K
2 < K2

j+1.
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By expanding (24) at (�2,K2, w) = (0,K2
1, w1),

�2 = δ�+ · · · , K2 = K2
1 + δK + · · · , w = w1+ δw + · · · (26)

we have,

1
4K

2
1w1− L1w1 = 0

1
4K

2
1δw − L1δw = 2δ�K−4

1 L2w1− 1
4δKw1.

(27)

The solvability condition for the second equation of (27) requires that its right-hand-side
be orthogonal to the adjoint solutions of the first equation:

(δ�/δK)〈L2w1, w
∗
1〉 = 1

8K
4
1〈w1, w

∗
1〉 ≡ 1

8K
4
1 ||w1||2. (28)

It is easy to show from definition (25) and the symmetry ofL2 that the inner product
〈L2w1, w

∗
1〉 is always positive, and hence we conclude from (28),δ�/δK > 0. Thus, for

smallδK < 0, we must have,δ� < 0. This demonstrates the existence of an instability near
(�2,K2) = (0,K2

1):�
2 < 0 for K2

2 < K2 < K2
1. By the same token and the continuity of

�2(K2), it can be further deduced that there exist an accountable infinite number of instabili-
ties within the alternating intervals(K2

2n,K
2
2n−1)(n = 1,2) with decreasing growth rates. It is

interesting to note the similarity of this band of instabilities to the one in Floquet’s theory for
a linear periodic system. For a given continuous wave distribution,α = α(q), the instabilities
and associated growth rates can readily be carried out numerically.

To give an explicit example, we consider a primary wave system uniformly distributed
on the segment,|α(q)| = constant. In this case, we first compute the following eigenvalue
problem,

λw = L1w. (29)

In numerical computation, Equation (29) needs to be non-dimensionalized:λ/p2
0 → λ,

q/p0 → q. To compute the eigenvalues(λ+1 in particular) of (29), a modified quadrature
method is first used, and the results are then double-checked by means of the Rayleigh–Ritz
method. Since these numerical methods are well known (Baker [6]), only the numerical results
need to be given here. It should be noted that the instability interval spanned by(0,K2

1) in the
(�2,K2) plane actually corresponds to(1−K1,1+K1) in the non-dimensionalizedp-plane,
andK2

1 is a function ofq0(0< q0 < 2−
1
2 ).

Recall that the primary wave system is distributed on the interval,−q0 6 q 6 q0, and it
can readily be shown that the primary wave system degenerates to the discrete Benjamin–Feir
system in the limit,q0 → 0, withK2

j = 0 for j = 2,3. In the other limit,q0 → 2−
1
2 , ω2(q0)

approaches zero and the kernel ofL1 becomes singular. It is interesting to note that the limiting
wedge-shaped region formed by the wave number vectors(p, q) = (1,±2− 1

2 ) has a semi-
angle, tan−1(2− 1

2 ) = 35·30, exactly as in the case of the Kelvin ship wave pattern (Whitham
[7]). A further study of this singularity(p, q) = (1,2− 1

2 ) is thus of both theoretical interest
and practical importance.

q0 = 0·0 0·3535 0·53 0·70

K2
1 = 1·000 1·201 1·649 9·236

K2
2 = 0·000 0·090 0·306 4·670.

(30)
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The physical interpretation of (30) requires the following identity,

δpj/p0 = (2− 1
2 )(q0/p0)|α|(ω−

1
2

0 p
5
2
0 )Kj , (31)

where the one-dimensional spectral energy density is 2ωk|α|2/p0, andq0|α| is assumed con-
stant in this illustrative example.

5. Concluding remarks

In this paper, we have established a nonlinear dynamical model, Equation (11), for a distrib-
uted water-wave system, which is of practical importance in wind-wave modeling, and based
on this model we have demonstrated the instability of certain primary continuously distributed
wave systems. We have shown the primary wave system with a narrow spectral distribution on
(p0, q), whereq ∈ [−q0, q0] andq0/p0 < 2

1
2 , to be unstable to arbitrary small perturbations,

disregarding any specific form of its distribution over(p0, q), which is a key extension of
the result for a classic Stokes-wave system. In fact, whenq0 shrinks to zero, the result of
Benjamin–Feir for a Stokes wave is naturally recovered.

Knowledge of the growth rate of specific sidebands, a function ofq < q0 and |α| requires
the calculation of the complete set of growth curves associated with the pairs(Kj ,Kj+1), j

odd.
Thosep-discrete sidebands, Equation (15), of maximum growth rate can be expected to

grow under wind forcing and evolve further through energy transfer to a still lower side
band and down shifting due to wave breaking (Tulin [8]), wave groups being produced in
the process.

It now seems conceivable, and further study is required to confirm this, that in the ocean a
finite number of thesep-discrete modulated waves, each propagating within a different sector,
can be brought about through the instability mechanism shown here in the case of the sector
bisected by the wind direction.

Appendix

To fourth order, the Hamiltonian in (2) takes the form,

H = H [η(k, t), ψ(k, t)]

= 1

2

∫
|k|ψkψ∗k dk +

∫
K(3)(k, k1, k2)ψkψk1ηk2δk+k1+k2 dk dk1 dk2

+
∫
K(4)(k, k1, k2, k3)ψkψk1ηk2ηk2δk+k1+k2+k3 dk dk1 dk2 dk3

+1

2

∫
gηkη

∗
k dk, (A1)

where

K(3)(k, k1, k2) = − 1

4π
[k · k1+ |k| · |k1|],
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K(4)(k, k1, k2, k3) (A2)

= − 1

32π2
(|k| · |k1|)[2|k| + 2|k1| − |k + k2| − |k + k3|

−|k1+ k2| − |k1+ k3|]
and the constant density has been set to unity without loss of generality.

We may combine Equations (2) into a single equation by introducing a pair of normal
complex variables,{a(k, t), a∗(k, t)},
a(k, t) = (1/√2)(γkη(k, t)+ iψ(k, t)/γk), (A3)

where the dimensional factor,γk = (ωk/|k|) 1
2 with ωk = (g|k|) 1

2 , has been chosen such
that the terms (γkηk, ψk/γk) have the same dimensionality and, furthermore, the linearized
Hamiltonian is diagonalized. The Hamiltonian Equations (2) then take the form

i
∂ak

∂t
= δH

δa∗k

= ωkak +
∫
U(1)(k, k1, k2)ak1ak2δk−k1−k2 dk1 dk2

+2
∫
U(1)(k2, k1, k)a∗k1ak2δk+k1−k2 dk1 dk2

+
∫
U(3)(k, k1, k2)a

∗
k1a
∗
k2δk+k1+k2 dk1 dk2

+
∫
V (1)(k, k1, k2, k3)ak1ak2ak3δk−k1−k2−k3 dk1 dk2 dk3

+3
∫
V (1)(k3, k2, k1, k)a∗k1a

∗
k2ak3δk+k1+k2−k3 dk1 dk2 dk3

+
∫
V (2)(k, k1, k2, k3)a

∗
k1ak2ak3δk+k1−k2−k3 dk1 dk2 dk3

+
∫
V (4)(k, k1, k2, k3)a

∗
k1a
∗
k2a
∗
k3δk+k1+k2+k3 dk1 dk2 dk3 (A4)

with the corresponding Hamiltonian,

H =
∫
ωkaka

∗
k dk +

∫
U(1)(k, k1, k2)(a

∗
k ak1ak2+ aka∗k1a∗k2)δk−k1−k2 dk dk1 dk2

+1

3

∫
U(3)(k, k1, k2)(a

∗
k a
∗
k1a
∗
k2+ akak1ak2)δk+k1+k2 dk dk1 dk2

+
∫
V (1)(k, k1, k2, k3)(a

∗
k ak1ak2ak3+ aka∗k1a∗k2a∗k3)δk−k1−k2−k3 dk dk1 dk2 dk3
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+1

2

∫
V (2)(k, k1, k2, k3)(a

∗
k a
∗
k1ak2ak3)δk+k1−k2−k3 dk dk1 dk2 dk3

+1

4

∫
V (4)(k, k1, k2, k3)

×(a∗k a∗k1a∗k2a∗k3+ akak1ak2ak3)δk+k1+k2+k3 dk dk1 dk2 dk3, (A5)

where

U(1)(k, k1, k2) = −U(−k, k1, k2)− U(−k, k2, k1)+ U(k1, k2,−k),

U(3)(k, k1, k2) = U(k, k1, k2)+ U(k, k2, k1)+ U(k1, k2, k)

with U(k, k1, k2) = 1
8π (ωk/|k|)

1
2 (ωk1/|k1|) 1

2 (|k2|/ωk2) 1
2 [k · k1+ |k| · |k1|],

V (1)(k, k1, k2, k3) = 1
3[−V (−k, k1, k2, k3)− V (−k, k2, k1, k3)

−V (−k, k3, k1, k2)+ V (k1, k2,−k, k3)

+V (k1, k3,−k, k2)+ V (k2, k3,−k, k1)],
V (2)(k, k1, k2, k3) = [V (−k,−k1, k2, k3)+ V (k2, k3,−k,−k1)

−V (−k, k2,−k1, k3)− V (−k1, k2,−k, k3)

−V (−k1, k3,−k, k2)− V (−k1, k3,−k, k2)],
V (4)(k, k1, k2, k3) = 1

3[V (k, k1, k2, k3)+ V (k, k2, k1, k3)+ V (k, k3, k1, k2)

+V (k1, k2, k, k3)+ V (k1, k3, k, k2)+ V (k2, k3, k, k1)],
with V (k, k1, k2, k3) = (1/8π)2(ωk/|k|) 1

2 (ωk1/|k1|) 1
2 (|k2|/ωk2) 1

2 (|k3|/ωk3)1/2

|k| · |k1|[2(|k| + |k1|)− |k + k2| − |k + k3| − |k1+ k2| − |k1+ k3|]. (A6)

The kernelV (2)(k, k1, k2, k3) has the following symmetry property:

V (2)(k, k1, k2, k3) = V (2)(k1, k, k2, k3) = V (2)(k, k1, k3, k2)

= V (2)(k2, k3, k, k1). (A7)

We can further simplify Equation (A4) by introducing a canonical transformation,a(k, t)→
b(k, t) whose coefficientsA(j) and B(j) are chosen such that all the non-resonant terms
(U(1), U(3), V (1) and V (4)) in the Hamiltonian can be eliminated. Note, however, that the
term containingV (2) can not be eliminated, because the following resonance conditions are
involved:k + k1− k2− k3 = 0 andω+ ω1− ω2− ω3 = 0.

ak = bk +
∫
A(1)(k, k1, k2)bk1bk2δk−k1−k2 dk1dk2
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+
∫
A(2)(k, k1, k2)(bk1)

∗bk2δk+k1−k2 dk1 dk2

+
∫
A(3)(k, k1, k2)(bk1)

∗(bk2)∗δk+k1+k2 dk1 dk2

+
∫
B(1)(k, k1, k2, k3)bk1bk2bk3δk−k1−k2−k3 dk1 dk2 dk3

+
∫
B(2)(k, k1, k2, k3)(bk1)

∗bk2bk3δk+k1−k2−k3 dk1 dk2 dk3

+
∫
B(3)(k, k1, k2, k3)(bk1)

∗(bk2)∗bk3δk+k1+k2−k3 dk1 dk2 dk3

+
∫
B(4)(k, k1, k2, k3)(bk1)

∗(bk2)∗(bk3)∗δk+k1+k2+k3 dk1 dk2 dk3, (A8)

where

A(1)(k, k1, k2) = −U(1)(k, k1, k2)/(ωk − ωk1− ωk2),
A(2)(k, k1, k2) = −2A(1)(k2, k1, k),

A(3)(k, k1, k2) = −U(3)(k, k1, k2)/(ωk + ωk1+ ωk2),
B(1)(k, k1, k2, k3) = −{23[U(1)(k, k1, k − k1)A

(1)(k2+ k3, k2, k3)

+U(1)(k, k2, k − k2)A
(1)(k1+ k3, k1, k3)

+U(1)(k, k3, k − k3)A
(1)(k1+ k2, k1, k2)

+U(1)(k1, k, k1− k)A(3)(k2, k3, k2− k3)

+U(1)(k2, k, k2− k)A(3)(k1, k3,−k1− k3)

+U(1)(k3, k, k3− k)A(3)(k1, k2,−k1− k2)]
+V (1)(k, k1, k2, k3)}/(ωk − ωk1− ωk2− ωk3),

B(2)(k, k1, k2, k3) = A(1)(k1, k2, k1− k2)A
(1)(k3, k, k3− k)

+A(1)(k1, k3, k1− k3)A
(1)(k2, k, k2− k)

−A(1)(k + k1, k, k1)A
(1)(k2+ k3, k2, k3)

−U(1)(k, k2, k − k2)A
(1)(k3, k1, k3− k1)

−A(1)(k, k3, k − k3)A
(1)(k2, k1, k2− k1)

+A(3)(k, k1,−k − k1)A
(3)(k2, k3,−k2− k3),
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B(3)(k, k1, k2, k3) = −{2[U(1)(k3, k, k3− k)A(1)(k1+ k2, k1, k2)

−U(1)(k1+ k, k1, k)A(1)(k3, k2, k3− k2)

−U(1)(k2+ k, k2, k)A(1)(k3, k1, k3− k1)

−U(3)(k1, k,−k1− k)A(1)(k2, k3, k2− k3)

−U(3)(k2, k,−k2− k)A(1)(k1, k3, k1− k3)

+U(1)(k, k3, k − k3)A
(3)(k1, k2,−k1− k2)]

+3V (1)(k3, k2, k1, k)}/(ωk + ωk1+ ωk2− ωk3),
B(4)(k, k1, k2, k3) = −{23[U(1)(−k − k1, k, k1)A

(1)(k2+ k3, k2, k3)

+U(1)(−k − k2, k, k2)A
(1)(k1+ k3, k1, k3)

+U(3)(−k − k3, k, k3)A
(1)(k1+ k2, k1, k2)

+U(3)(k + k1, k, k1)A
(3)(−k2− k3, k2, k3)

+U(1)(k + k2, k, k2)A
(3)(−k − k3, k, k3)

+U(1)(k + k3, k, k3)A
(3)(−k1− k2, k1, k2)]

+V (4)(k3, k2, k1, k)}/(ωk + ωk1+ ωk2+ ωk3), (A9)

the new Hamiltonian takes the form,H(ak, a∗k )→ H(bk, b
∗
k ),

H =
∫
ωkbkb

∗
k dk + 1

2

∫
T (k, k1, k2, k3)b

∗
kb
∗
k1bk2bk3δk+k1−k2−k3 dk dk1 dk2 dk3, (A10)

where

T (k, k1, k2, k3) = V (2)(k, k1, k2, k3)

−2[U(1)(k, k2, k − k2)A
(1)(k3, k1, k3− k1)

+U(1)(k2, k, k2− k)A(1)(k1, k3, k1− k3)

+U(1)(k, k3, k − k3)A
(1)(k2, k1, k2− k1)

+U(1)(k3, k, k3− k)A(1)(k1, k2, k1− k2)

−U(1)(k + k1, k, k1)A
(1)(k2+ k3, k2, k3)

−U(3)(−k − k1, k, k1)A
(3)(−k2− k3, k2, k3)]

+(ωk + ωk1− ωk2− ωk3)B(2)(k, k1, k2, k3). (A11)
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The canonical transformation fromak(t) to bk(t), originally introduced by Zahkarov [3],
was first carried out completely by Krasitskii [5]. In all the earlier work, the transformations
from ak(t) to bk(t) were not canonical, and one of the direct consequences of this is that the
Hamiltonian (the wave energy) in terms of thebk(t) is not conserved, see Li and Tulin [9] for
the details on this issue.

The dispersion coefficients of (5) are given by

ω0(q) = ω(p0, q) = g 1
2 (p2

0 + q2)
1
4 ,

ω1(q) =
(
∂ω

∂p

)
0

= 1
2g

1
2p0(p

2
0 + q2)−

3
4 ,

ω2(q) =
(
∂2ω

∂p2

)
0

= 1
2g

1
2 (p2

0 + q2)− 3
4
[
1− 3

2p
2
0/(p

2
0 + q2)

]
.

(A12)
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