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Abstract. Stability and dynamics of a distributed gravity traveling-wave system which is of practical importance
in ocean-wave modeling are studied in this paper. A new cubic nonlinear evolution equation for the distributed
wave system has been derived. The instability findings of the primary wave system are of critical value in the study
of real wind waves and are technically a generalization of the Benjamin—Feir instability for a monochromatic
water-wave system.
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1. Introduction

Recent low-grazing-angle radar observations (Werle [1]) suggest the general existence of wind
waves propagating as multiple wave groups. The characteristics of the groups suggest that they
may result from wave instability of the Benjamin—Feir [2] type. The radar is believed to be
highly useful in its ability to see the wave groups, and groups have been seen propagating over
a variety of angles, notably in the wind direction. These observations immediately give rise
to the question as to whether infinitesimal waves distributed in their direction of propagation
about the wind, constitute an unstable wave system in a sense similar to a monochromatic,
unidirectional wave undergoing Benjamin—Feir instability. This question has never been raised
in the literature, and therefore the present theoretical study of the instability of a wave system
whose energy is continuously distributed was undertaken; in particular, the wave energy is
assumed distributed on a straight line segment, bisected by the wind direction, in vector wave-
number space. Therefoke= (p, ¢) is discrete in the wind directiory = po, but distributed
transversely overgo < g < go, Where we restricted our attentiondg/ po < 273,

In what follows, the Hamiltonian treatment of Zakharov [3], first formulated in 1968, is
applied to derive a cubic nonlinear evolution equation appropriate to this particular distributed
wave system, an integro-partial differential equation, and linear stability of the wave system
is subsequently studied.

2. Hamiltonian formulation

The problem is first formulated in wave-number space, and subsequently partially transformed
to physical space. With the usual nomenclature,

nk,t = 1 / n(x, 1) e *xdx, Yk, 1) = i / (X, 1) e kX dx, 1)
2 2
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wheren (X, t) is the wave elevation ang(x, r) the potential on the water surface, the equations
of the system in Hamiltonian form become

om _ SH o _3H @
a sy ot sny’

where H[n(Kk, 1), ¥ (K, t)] has been given to fourth order in the wave slope (Zakharov [4]).
According to the procedure followed by Zakharov [4] and followed up by Krasitskii [5], we
may first introduce a normal complex variabdgk, 1) = 2*%(ykn(k, 1 +ivk, t)/v), fol-
lowed by its canonical transformation to another normal varidilegllowing the expression

of the governing equation in a particularly useful form,

.db 0H *
la_tk = = by + / T (k, K1, K2, K3)b;1 brobiadk1—ro—k3 0k 1 dkz dk3 3)
k
or
0By . o)+ kD -0 (2 —w (k3]
= = T (k, K1, Ko, k3) By Bro Bz @'t Tt @iiame
X S tk1—k2—k3 Ok 1 Ak dK 3, (4)

whereB, = b, €*®": the interaction kernel’ and others are given in the Appendix.

As is well known, this Zakharov equation (4) governs the weakly nonlinear dynamics of
surface water waves, and is completely equivalent to the full water-wave equations in physical
space, to third order.

3. Model equations

A general treatment of (4) does not exist, so we first specialize it to the case of interest. Our
concern is the perturbation and stability of the primary wave system which has a straight line
segment in the wave number space bisected by the wind direction. Thatiépo, ¢), where
—qg0 < g < qolqo/po < 2—%). Therefore, we consider the wave number spéce: (p, q),
wherepg—8p < p < po+38p(8p/posmall), and—gg < g < go. Herepg andgg are arbitrary
initially, except for the restriction oo/ po.

Having restricted the range &f we may correspondingly simplify the evolution equation
(3) by approximatingy, and the kernel’ nearp = pg. We first expand the linear dispersion
relation arountp = po:

wr = o(p, q) = wo + w1(p — po) + 3w2(p — po)?, (5)
where coefficients; are given in the Appendix and take

T (k, k1, k2, k3) = T[(po, ), (Po. q1). (po, g2), (Po. q3)]1 = To(q, g1, G2, q3). (6)
Then (3) becomes,

.db(p,q.1)

i = Jan(q) + 01(9) (0 — po) + Sw2(g) (p = po)?Ib(p.q. 1)

ot
+ f To(q, 41, 2, 46 (p1, a0b(Pas 42)b (3, 45)

X k+k1—k2—k3 dp1 dg1 dp2 dgo dpz dgs. (7)
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To return tox-space, we transform (7) with respect(jo— po), using

b(x,q,1) = fb(p,q,t)é[pp”]x dp (8)
and obtain
ob(x,qg,t ) ob(x,q,t 9%b(x,q,t
229D b, g, ) — i) LD 1, 0D
ot ox ox

+ / To(qs g1, 42 ga)b" (x. g1, Db (x, g, DB(E, g, 1)

X8y 4q1-q2—q3 dg1 dg2 dga. )

From the above context there should be no confusianofqg, ) with b(p, g, 1).
We can put Equation (9) in the following form by writing,

b(x,q,t) = B(x,q,t) e 0@,

and, using a moving reference— w1t — x, we have

0B,

IW = —%wz(Q)

3°B,
0x2

+/ To(q, g1, g2, qg)B(}lequqgei[w(q)+w(ql)—w(42)—w(q3)]l

X8y 4q1-q2—q3 g1 dg2 dgs. (10)

Assuming symmetry abouj = 0, corresponding physically to the case of the reso-
nant wave pairs taking a special configuration in wave number plane during resonant wave
interaction, a parallelogram, such thiat, g3) = (¢, g1), we have,

0B,

1
l? = —5w2(q)

3°B
8x2q +2403qu0(4,41)|3¢,1|2(1611, (11)

wherew,(q) is given in (A12),To(q, q1) = To(q, g1, 4, q1) is real and symmetric, and its
integration is oveK—qo, qo).

Equation (11) now governs the weakly nonlinear dynamics pfrearrow banded ang-
distributed,g-symmetric water wave system kin= (p, ¢g) and is therefore a generalization
of the cubic-nonlinear Schrédinger equation for a unidirectional narrow-banded water wave
system.

4. Primary wave system and its instability

Equation (11) admits a-unmodulated quasi-stationary wave envelope solution, analogous to
the Stokes wave of the cubic-nonlinear Schrédinger equation,

Bo(x,q,t) = a(q) e P@", (12)
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where 8(q) = 2q; fTo(q,q1)|a(ql)|2dq1, integrated oveX—qo, go). This quasi-stationary
envelope solution corresponds to the primary wave system wjthd&crete(p = po) and
transversely distributed spectruig € [—qo, go]).

We shall be concerned in the following with the stability of the primary wave system. We
first perturb the primary wave systemBgy(q, ) = a(q) e P @7,

B(X, ‘IJ) ZBO(QJ)[]-‘{‘SB(X’ QJ)]’ (13)

where§B is a small but otherwise arbitrary perturbation, and linearize it with respect to
0B(x,q,1),

98B, 4 ()8253
Tor T e

¢ 4 240 / To(q. g0)ler(gD) (3 Bys + 8B2) dgn. (14)

wheresB, = §B(x, g, t).
The general solution to the perturbation equation (14) can be written in the form

8B(x,q,1) = 8B (q) &~ L [§B~(g) &K FE* (15)

where the eigen numbé is real, the eigenvalu can be complex, anélB* (¢) # B~ (q)
in general. We then have the eigenvalue problem{&®", B},

Q+ 1K?%wp + L, Le SBt
: =0, (16)
—Lq, Q+ 3K2wp + Lg 8B~

where the integral operatdr, is defined byL,s(¢) = 290 | To(q, q1)|a(g1)|?s(g1) dga.
Equivalently, we may write,

( Q %Kza)z(q) ) (u )
: =0, 17)
1K 2wy(q) + 2la(q)[*Lo Q v
where
u(q) = la(@)P[6B*(q) + 8B~ ()], v(q) = la(q)I’[6B(g) — B~ ()] (18)

andLos(q) = 2q0 [ To(q, g1)s(q1) dqa.

The eigenvalue problem (17) is difficult to solve, because of its varying coefficients. We
shall approach the problem by studying its behavior 8%a« 0, using a perturbation method.
From (17), we have

{Q% — [3K2w2(q) 2 — K?wa(q)|a(q)*Lo}u(g) = 0. (19)

For a given perturbatiod B, Equation (17) defines a dispersion relati?f, = f(K?),
with (K2, Q?) = (0, 0) being always a solution. For reasons of stability, we are interested
in nontrivial zero solutions. That i§22 = 0, for some nontrivial values off‘,,( = 0. If such
solutions exist(K?, Q?) = (K?, 0), we may immediately deduce the stability of the solutions

nt?
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nearby (stable i€2> > 0 always or unstable 2> < 0 somewhere). To this end, we shall
transform (19) to a form convenient to cope with

Lk 2y(q) — / Ty(q. qow(qy) dgs = O, (20)
where
— -1 i 1-@° ?
w(g) = (@) (@) -w2(q)] {—[%szz(q)]z} . 1)

The kernelTy (g, g1) is symmetric,

Tn(g. 1) = 290To(q. q1)la (@)l (qu)l[—w2(q)] 2 [—wa(g1)] 2

1o | 1-a2 |
. 22
* { [%K2w2<q)12} {[%szqu)]z} ¢2

Assuming thaigo/ po)? < 3 (note thatw,(q) < 0 for (¢/po)? < (q0/po)? < 3), andQ?
small (more preciself2?/[3 K %w,(¢)1> < 1), we have

Tn(g.q1) = 2q0To(q. gl ()l (gn) [~ w2(g)] 2 [~w2(qp)] 2

x {14 2Q°K wa(q)] 7% + 2Q°K *wa(q1)] 7%} (23)
Thus (20) becomes,
[$K2— Ly — 2Q*K*Lolw = 0, (24)

whereL ; are given by,
Lis(q) = 2q0 / To(g. g1)|a (@) |l (g) | [—w2(q)] 2 [—wa(q1)]™ 25(q1) daa.

Las(q) = 240 f To(q. a0 (@)]le(q) [[w2(@)wa(gr)] (25)

x{[w2(q)]7% + [w2(q1)]17?}s(g1) dga.

We can now solve Equation (24) by using a prescribed perturbation method. Starting with
certain unperturbed solutio®? = 0, K2 # 0, we obtain from (24);K?w = Liw. Itis
easy to show thak, is self-adjoint and compact (the kernel bf is real, symmetric, and
bounded, whelx(g)| is assumed continuous) and by the Hilbert—-Schmidt expansion theory
there therefore exists a set of non-empty, real eigenvdlugssatisfying

AI<A2_<---<k;,<---<0<---<)\JI\’,<---<A§F<A1F,

whereiy = sup .ol / L1s(q)s*(q1) dg1/ [ s(¢)s*(g1) dg1}, and eigenfunctiongw;} sat-
isfy, kfwf = Lle[, for j = 1, 2. We have thus a set of nontrivial zel@3 = 0 atK? = 417,
for j = 1, 2. Below we will show that2*(K?) < O for somek? < K? < K7 ;.
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By expanding (24) at¢?, K2, w) = (0, K2, wy),

QLP=8Q+---, K*=K:4+8K+ -+, w=wi+8w+--- (26)
we have,

%Klzwl —Liw, =0

(27)
1K25w — Lidw = 28QK; " Lowy — 28K wy.

The solvability condition for the second equation of (27) requires that its right-hand-side
be orthogonal to the adjoint solutions of the first equation:

(8Q/8K)(Lowy, wi) = K Hwq, wi) = 2K [|wq| | (28)

It is easy to show from definition (25) and the symmetrylofthat the inner product
(Lowy, wy) is always positive, and hence we conclude from (38)/6K > 0. Thus, for
small§K < 0, we must havejQ2 < 0. This demonstrates the existence of an instability near
(Q?% K?) = (0,K?):Q% < 0for K < K2 < K2. By the same token and the continuity of
Q?(K?), it can be further deduced that there exist an accountable infinite number of instabili-
ties within the alternating intervalks,, K2 ,)(n = 1, 2) with decreasing growth rates. It is
interesting to note the similarity of this band of instabilities to the one in Floquet's theory for
a linear periodic system. For a given continuous wave distributioa,x(g), the instabilities
and associated growth rates can readily be carried out numerically.

To give an explicit example, we consider a primary wave system uniformly distributed
on the segmentwx(g)| = constant. In this case, we first compute the following eigenvalue
problem,

Aw = Liw. (29)

In numerical computation, Equation (29) needs to be non-dimensionalizeg — 2,
q/po — q. To compute the eigenvaluga; in particular) of (29), a modified quadrature
method is first used, and the results are then double-checked by means of the Rayleigh—Ritz
method. Since these numerical methods are well known (Baker [6]), only the numerical results
need to be given here. It should be noted that the instability interval spann@d4sy) in the
(22, K?) plane actually corresponds th— K, 1+ K3) in the non-dimensionalizegd-plane,
andK? is a function ofgo(0 < go < 2-3).

Recall that the primary wave system is distributed on the intervgd, < ¢ < go, and it
can readily be shown that the primary wave system degenerates to the discrete Benjamin—Feir
system in the limitgo — 0, with K2 = 0 for j = 2, 3. In the other limitgy, — 2*%, w2(qo0)
approaches zero and the kerneLgfbecomes singular. It is interesting to note that the limiting
wedge-shaped region formed by the wave number veciarg) = (1, ﬂ:Z*%) has a semi-
angle, tanl(Z*%) = 35.3%, exactly as in the case of the Kelvin ship wave pattern (Whitham
[7]). A further study of this singularityp, ¢) = (1, 2‘%) is thus of both theoretical interest
and practical importance.

go =00 03535 053 070
K?=1.000 1201 1649 9236 (30)
K2=0.000 0090 0306  4670.
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The physical interpretation of (30) requires the following identity,

5p;/p0 = 2 ) g0/ po)lal(wy 2 pO)K,. (31)

where the one-dimensional spectral energy densitwj$cd?/ po, andgo|a| is assumed con-
stant in this illustrative example.

5. Concluding remarks

In this paper, we have established a nonlinear dynamical model, Equation (11), for a distrib-
uted water-wave system, which is of practical importance in wind-wave modeling, and based
on this model we have demonstrated the instability of certain primary continuously distributed
wave systems. We have shown the primary wave system with a narrow spectral distribution on
(po, q), Whereg € [—qo, go] andgo/ po < 22, to be unstable to arbitrary small perturbations,
disregarding any specific form of its distribution ougry, ¢), which is a key extension of

the result for a classic Stokes-wave system. In fact, wfeshrinks to zero, the result of
Benjamin—Feir for a Stokes wave is naturally recovered.

Knowledge of the growth rate of specific sidebands, a functiop ef gg and {| requires
the calculation of the complete set of growth curves associated with the(Agir«k ;1) j
odd.

Those p-discrete sidebands, Equation (15), of maximum growth rate can be expected to
grow under wind forcing and evolve further through energy transfer to a still lower side
band and down shifting due to wave breaking (Tulin [8]), wave groups being produced in
the process.

It now seems conceivable, and further study is required to confirm this, that in the ocean a
finite number of thesp-discrete modulated waves, each propagating within a different sector,
can be brought about through the instability mechanism shown here in the case of the sector
bisected by the wind direction.

Appendix
To fourth order, the Hamiltonian in (2) takes the form,

1
=3 / K[y dk + f K@K, k1, K) ¥ iami28ixr vz dk dk g dk,
+ / K@ (K, K1, Kz, Ka) Vi Wramioniode k144243 dk dkq dk dks

1
+5 f gy ok, (A1)

where

1
K® (K, kq, k) = ——[K - kq + [K]| - [Kq]],
4
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K@ (K, ki, ko, ka) (A2)

1
= —32n2(|kl - [KiDI2IK] + 2[k1| — [k + k2| — [k + K3

—|ky 4+ Ko| — |ky + K3l]

and the constant density has been set to unity without loss of generality.
We may combine Equations (2) into a single equation by introducing a pair of normal
complex variables{a(k, t), a*(k, 1)},

ak, 1) = (L/vV2)(min(k, 1) + iy (K, 1)/v0), (A3)

where the dimensional factoy, = (wk/|k|)% with w; = (g|k|)%, has been chosen such
that the termsn., ¥ /y) have the same dimensionality and, furthermore, the linearized
Hamiltonian is diagonalized. The Hamiltonian Equations (2) then take the form

_8Clk 0H

l? N daj;
= way + / UD (K, k1, k) araizdi—i1—kz k1 dkz
+2/ UD (Kz, K1, K)aj1ar26-11-12 dkq dko
+/ U® (K, Ky, K2)agais8+x1+k2 Ky dkz
+/ VO K, ky, Kz, Kg)araar2araSi—1—rz—rs 0k dkz dkz
+3/ V®(Ka, k2, K1, K)aj1a7a138k+ k144213 OK1 K2 dK3

+/ V@ (K, Ky, Ko, Ka)araroaradisi1—rz2—r3 dkq dkp dks

+ [ VO, ke kaaapaisdisasizina dea dea dee (A%)
with the corresponding Hamiltonian,

H = / wraray dk + / UD(k, k1, K2) (af araarz + axai1a;)8c—r1—r2 dk dkq dkz
1 3 * k%
+3 U™ (k, k1, ko) (agagas + arar1ai2) Sikavk2 dk dk g dk

+ / VK, kg, K, Ka) (ay ax1ak2aks + axagy agaa;3) Sk—k1-rz2—k3 dk dky dkz dk
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1
+§ / V@ (K, k1, K2, K3) (af ] ak2ai3) 8k 141-r2—13 Ak dk 1 dk o dk3

+% / V@K, Ky, ko, Ka)

X (@ a1 @053 + ararar2ax3) Sirk1i2+k3 dk dk g dko dks, (A5)
where
UD (K, ki, ko) = =U (=K, ki, kz) — U(—k, kz, kp) + U (ky, ka, —K),
UP (K, ki, k) = Uk, ky, ko) + Uk, ka, k1) + U ki, ka, k)
with U (k, k1. k) = & (i /IKD) 2 (0r1/[Ka) 2 (K2l /wx2) 21K - Ky + K] - [Kal],
VK, ke, ka, ks) = 3[=V(—k, kg, k2, ka) — V(—k, Kz, ki, k3)
—V(=k, ks, k1, k2) + V (K, k2, =k, k3)
+V(ky, k3, =k, k2) + V(ka, k3, =k, kp)],
V@ (K, kg, ko, k) = [V(—k, —Kq, k2, k3) + V (K2, k3, —k, —k1)
—V(=k, kz, —ki, k3) — V(=ky, ka2, =k, k3)
—V(—Ki, k3, =k, ko) — V (=K, k3, =K, k2)],
V@K, k1, K2, ks) = 3V (K, Ky, Kz, ka) + V (K, ka, K1, Kg) + V (K, ks, kg, k2)
+V(ky, K2, K, k3) + V(kg, ks, k, k2) + V(ka, ks, K, k)],
with V (K, K1, Ko, ka) = (1/8m)2(@x /1K) 2 (@ia/IKa)2 (IKal /x2) 2 (1Ksl /)2
K| - Ika|[2(1K] + [Ka]) — [k + ko — |k + k3| — [k1 + kz| — [K1 + K3]]. (AB)
The kernelV @ (k, k1, ko, k3) has the following symmetry property:
V@K, ki, ko, ks) = VO (ky, k, Ko, ks) = V@ (K, Ky, ks, ko)
= V@(ky, ks, k, ky). (A7)
We can further simplify Equation (A4) by introducing a canonical transformatidq,s) —
b(k,t) whose coefficientsA” and BY) are chosen such that all the non-resonant terms
WD, U®, v and V@) in the Hamiltonian can be eliminated. Note, however, that the

term containingV® can not be eliminated, because the following resonance conditions are
involved:k + k; — ko — ks =0 andw + w1 — ws — w3 = 0.

ar = by +/A(1)(k,k1, K2)br1bi28k—k1—k2 dk1dK>
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+ / AP (K, K1, K2) (bi1)*biaByx1-k2 Ok 1 K

+ / AP (K, K1, K2) (br1)* (i) *Sgsx1+42 Ak 1 k2

+/ B (K, ky, Kz, Ks)brabiobiai—i1-r2—k3 Ok dkz dk

+/ B@ (K, ky, Kz, K3) (bx1) *brabiadi+x1-k2—k3 k1 dkz dks
+/ BP (K, K1, K2, K3) (br1)* (b2) *bradi-ri1ko—ka Ky dkz ok

+/ B (K, K1, K2, K3) (br1)* (br2)* (i) * S x1h2-k3 K1 Ak K,
where
AD (K, ky, ko) = —UD(K, ky, ko) /(on — wr1 — wi2),
AP (K, ky, ko) = —2AD (ko, k1, k),

AP (K, ky, k) = U (k, kq, ko) /(o + op1 + ax2),
BB (K, ky, ko, ka) = —{3[UD(k, kg, k — k) AD (K + K3, ka, K3)

+UD (K, ko, k — ko) AD (k1 + ks, k1, k3)
+UP (K, k3, k —ka) AD (kg + ka, ki, ko)
+U D (kq, k, kg — K)AD (k, ks, ko — K3)
+UP (Ko, k, ko — K)A® (ky, k3, —k1 — ka)
+UD(Ks, k, ks —K)A® (kq, ko, —k3 — ko)]
+VOK, ke, Ko, Ka)}/(0r — o1 — 02 — p3),
B@(k, k1, ko, k3) = AP (kg ko, kg — ko) AP (K, k, kg — k)

+AD (K1, ks, k1 — ka) AP (ko, k, ko — k)

—ADK 4+ kq, k, k) AP (ky 4 k3, ko, Ka)

—UD(K, ko, k — ko) AP (k3, k1, k3 — k1)

—AW (K, k3, k — ka) AP (ka, k1, ka — ki)

+A® (K, kq, —k — k1) A® (Ko, ks, —k2 — Kk3),

(A8)
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Bk, k1, ka, ka) = —{2lUP (ka, k, ks — k) AP (ks + ko, ki, ko)

—UD (k1 + Kk, k1, K)AD (K3, ka, ks — k2)

—UD(kz + K, ko, K) AP (K3, k1, ks — k)

—U® (K, k, —k1 — K)AP (ka, ks, kz — k3)

—U® Kz, k, —kz — K)AP (ky, ks, k1 — k3)

+UD (K, ks, k — k3) A® (kq, K2, —K1 — K2)]

+3V P ks, ka, K1, K)}/ (@ + wp1 + ox2 — wx3),
B@ (K. k1. ka, kg) = —{3[UD(—k — ki, k, k) AP (K2 + ks, Kz, k3)

FUD (—k — ko, k, k) AD (k1 + ka, ki, ka)

+UP (—k —ka, k, ka) AP (k1 + k2, ka, ko)

+UP (K + Ky, k, k1) A® (—k3 — ks, Ko, K3)

+UD (K 4 Kka, k, k) A®(—k — k3, k, ka)

+UD (K + ks, k, ka) A® (—ky — kg, ki, k)]

+V @ (K, ka, K1, K)}/ (0 + w1 + oxz + wr3), (A9)

the new Hamiltonian takes the for,(ax, af) — H (b, b),

H= /wkbkb,’f dk + % / T (K, k1, k2, K3)b; by brobradkik1—ko—i3 Ok dk1 dk dks,  (A10)

where
T (K, k1, ko, k3) = V@ (K, ky, ko, k3)

—2[UD (k, ka2, k — k) AP (k3, k1, k3 — K1)
+UD (K2, k, ka — k) AP (kq, k3, kg — Ks)
+UD (K, ks, k — ka) AV (kz, ki, kz — K1)
+UD (K3, k, kg — K)AD (K1, kz, kg — ko)
—UP(k + K1, k, k) AP (k2 + K3, K2, ks)
—U®(—k — kg, k, k) A® (—kz — K3, ka2, k3)]

+(wp + w1 — w2 — axz) BP (K, kg, K, K3). (A11)
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The canonical transformation from (¢) to b, (¢), originally introduced by Zahkarov [3],
was first carried out completely by Krasitskii [5]. In all the earlier work, the transformations
from a, (¢) to by (¢) were not canonical, and one of the direct consequences of this is that the
Hamiltonian (the wave energy) in terms of thgr) is not conserved, see Li and Tulin [9] for
the details on this issue.

The dispersion coefficients of (5) are given by

wo(q) = w(po,q) = g2 (PE+ ¢2)1,
ow 1 3

wi(q) = (a_> = 382po(pl + 4> 7%, (A12)
PJ/o
92w 3

wa(q) = (W) =13 (PE+ gD [1-2p2/ (P2 +qD)].

0
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